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In this paper, the behavior of a band-stop filter with monomod resonator, having potential applications in photonic crystal 
microcircuits, is studied using “coupled mode theory” which is an approximate method that allows relatively simple 
derivations of optimal design parameters. Coupled cavities appear everywhere in optical circuits. In many cases, they 
induce parasitic effects like important reflections back to the source. In other situations, if they are carefully tuned, optical 
devices consisting of micro cavities and guides can act as filters. The purpose of this article is to establish a procedure for 
designing efficient stop band filters with monomod, laterally coupled, cavities using a combination of analytical formula and 
numerical simulations. 
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1. Introduction 
 
Photonic crystals are periodic artificial nano 

structures which affect the propagation of 
electromagnetic waves in much the same way as the 
periodic potential in a semiconductor affects the electron 
motion, imposing allowed and forbidden electronic 
energy bands [5]. The existence of forbidden frequency 
bands inside photonic crystals leads to the possibility of 
constructing some micro optical devices like: highly 
efficient omnidirectional mirrors, low loss waveguides 
able to direct light even if sharp corners appear along 
their path [6] or miniature optical filters. 

The current paper will deal just with a particular but 
important aspect of photonic crystal waveguide design, 
namely “the coupling of optical energy between a 
monomod cavity and an optical guide”. 

One way to directly analyze the behavior of 
waveguides, coupled with cavities, is to solve Maxwell 
Equations for a given photonic device (a part of space 
corresponding to the periodic dielectric pattern, 
possessing optical channels and cavities carved inside it) 
[7]. A popular method that is regularly employed in 
studying the electromagnetic wave propagation (solving 
Maxwell Equations) is FDTD (Finite Difference Time 
Domain). However, this mathematical procedure does 
not give direct indications regarding best configurations 
and optimal parameters. In most cases, it can be used 
just to verify some results obtained by other means. 
There are also situations when FDTD serves as a trial 
and error procedure but changing the value of some 
parameters and running the algorithm again and again is 
a time consuming and laborious undertaking, in many 
circumstances being hard to infer what values of input 
variables would lead to the desired behavior of the 
device under research.  

In conclusion, an analytical formula, from witch an 
optimal set of parameters could be easily deduced, is needed. 
One relatively simple approach [2], [8] is to consider an 
idealized configuration, like the one in Fig. 1, described by 
the system (1) -     (2) where a number, varying from one to 
n, optical guides converge toward a resonant cavity that 
receives and, in the same time, leaks energy from and into 
these optical branches. Such a model, (1) -     (2), is based on 
“coupled mode theory” and was developed having in mind 
ordinary guides without any relation to photonic crystals [1]. 
So, the association between this theoretical model and 
photonic guides coupled to resonant monomod cavities is a 
bit forced and any theoretical prediction obtained using (1) -     
(2) has to be validated with the help of FDTD simulations. 

 
 
2. Simplified theoretical model for a unimode  
     cavity coupled with n guides 
 
The behavior of an optical monomod resonator, coupled 

to n input-output ports, can be described [1], [2] by the 
system of equations (1) -     (2): 
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where a is the amplitude of the resonant mode with 
frequency ω0 and lifetime τ; ui+, ui-, amplitudes of input, 
output signals respectively and Ci, pi, mi some complex 
constants. 

The resonant mode is excited by input waves, ui+, 
which couple to it with constants Ci. Also, the same 
mode, once created, starts to radiate energy coupling to 
the outputs with factors pi. As a remark, the amplitude a 
is normalized in such a way that |a(t)|2=E(t) (the energy 
inside the cavity). 
 

 
 
 

Fig. 1. Monomod cavity coupled with  n input output ports. 
 
 
 

The system (1) -     (2) has also to satisfy the 
conservation of energy principle and the condition of 
being symmetrical with respect to time. The two 
restrictions lead to interdependences between: M, p and 
C. In order to find the relationships between Ci, pi and 
mi, we will take all input signals ui+; i=1...n as being 
zero and the initial energy, inside the resonant cavity at 
t=0, will be considered E(0)=|a(0)|2. In consequence, by 
solving (1), we get: 
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On the other hand, the decay rate of the energy must 
equal the power emitted by the cavity through the n 
ports: 
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As all input signals are considered zero, the 

equation     (2) can be simplified to                     (6), 

where a(t) has been replaced by its particular expression in 
(3). 
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The process, described before, where the resonant cavity 

radiates its energy through output channels must be 
reversible. In other words, if the system is excited with the 
signal given by                     (6) reversed in time [1] (see                    
(7)) 
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the energy must accumulate inside the cavity till 
E(0)=|a(0)|2. Therefore if                         (7), is plugged as 
input signal, u+, in (1), the following equation is obtained: 
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whose solution is: 
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If the time derivative of |a(t)|2 is taken, then: 
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On the other hand, the rate of energy increase, inside the 
cavity, must equal the absorbed power through the n ports: 
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From         (10) and (11) it follows that: 
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From                         (12) and (5) it becomes evident that: 
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which shows that coefficients Ci and pi can not be 
chosen at random but must be equal to each other. 

Now, we will take a closer look at the elements of 
matrix M. They can be found from the condition of zero 

radiation at t=0. Therefore, the equation     (2) where the 
input is the signal from                         (7) and a(t) is the 
solution of                    (8) (see the explicit formula (9));  
must have the left member null at  t=0. Thus: 
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which means that: 
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An important solution of (1) -     (2) can be obtained 

by considering the input excitation as having the 
expression: 
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where u1+,...un+ are known amplitudes. 
 

By plugging                        (12) in     (2), the output 
amplitudes take the form (17): 
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The expression (17) is useful for calculating reflection 

and transmission coefficients. Therefore, by considering just 
one port excited at a time, the input amplitudes 
corresponding to the other n-1 ports being zero, (17) can be 
rewritten as follows: 
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from which, R and T can be calculated. 
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(see                        (12),                    (13)), and using (19), ( 
20 )  the equality reflection + transmission = 1 is verified as 
can be seen in (22). 
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The decay rate of the amplitude in the cavity, 
defined as the inverse of the lifetime corresponding to 
the resonant mode, can be written as the sum of decay 
rates corresponding to each port. Thus:  
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From (21) and (23) it follows that: 
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3. Stop band filter with monomod resonator.  
     Numerical results. 
 
The theory in the previous paragraph is general and 

can be applied to all sorts of optical devices where a 
monomode resonant cavity couples its energy to and 
from a number of guides. However, this general model is 
a simplification of reality and there is no guaranty it 
gives acceptable results for various particular situations. 
In consequence, any predictions of behaviors of a certain 
optoelectronic device, obtained by using the above 
described mathematical relations, have to be verified by 
solving Maxwell Equations using a numerical method 
like FDTD or by pure experimental means. 

As an example, a monomod cavity laterally coupled 
to a photonic guide will be studied (Fig. 2, Fig. 3) [3], 
[4]. 
 

 
 

Fig. 2 Resonant cavity laterally coupled to a photonic guide. 
 
 
 

 
 

Fig. 3 Schematic representation of the microoptical 
device in Fig. 2. 

According to the general theory in the previous 
paragraph, the optical device in Fig. 2, whose simplified 
theoretical model is given in Fig. 3, works as described 
by the equations (25) - (26) if the cavity is monomod. 
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For calculating the reflection and transmission 
coefficients we will consider, as already explained, 

u2+=0 and u1+(t)= u1+ejωt which plugged in (25) lead to an 
expression of a(t) identical to the one in (3). Also, by 
imposing the existence conditions from the previous 
paragraph, which in this particular case are: 
 

 (1) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗

∗

2

1

2

1
01
10

C
C

C
C  (27)

 
and: 
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the following equality is obtained: 
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The mathematical expressions of reflection and 

transmission coefficients can now be easily found using (3), 
the equation (26) and condition (29). Thus, 
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By making the notation, ω1=1/τ, (30) and (31) can be 

rewritten as: 
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The variation of T as a function of the relative shift in 

frequency with respect to ω0, for various values of the 
parameter ω0/ω1, is shown in Fig. 4, being a stop band 
characteristic. 

As a remark, all the physical quantities in (32) and (33) 
are normalized to ω0 in order the graphical representation in 
Fig. 4 be independent of the real values of ω, ω0, and τ.  
Therefore, in practical cases, if a particular value of ω0 is 
known, the expression (33) (and its diagram in Fig. 4) helps 
finding the variation interval of ω and the values of 1/τ for 
which T is maintained at reasonable low values. 

In general, for rates 1/τ small enough in comparison 
with ω0, T(Δω/ω0) has a sharp variation and the transmission 
coefficient drops rapidly as |ω-ω0| gets larger and larger. If 
ω1=1/τ has greater values, T becomes less dependent of the 
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difference |ω-ω0|, staying close to zero for larger 
intervals of values.  

 
 

 
Fig. 4 The transmission coefficient T from (33) when ω0/ω1 vary from 0.5 to 1000. 

 
 

The diagram in Fig. 4, obtained with the help of 
(33), looks pleasant, however, it remains to be seen if the 
real photonic device in Fig. 2 behaves as predicted by 
(33). Therefore, Maxwell Equations have to be solved 

exactly for the cavity coupled with the photonic guide from 
Fig. 2. For this purpose the configuration shown in Fig. 7 
(Fig. 2 extended over a large area of space) is chosen.

 

 
Fig. 5 a) The amplitude of the transmitted signal, measured in the point marked with × situated above the resonant 

cavity in Fig. 7. b) T(f)=Et(f)/Ei(f). Total transmission = 0.9. 
 
 

 

 
Fig. 6 The amplitude of the transmitted signal, measured in the point marked with × situated above the resonant 
cavity in Fig. 7, for the case when a sinusoidal excitation having the frequency f=0.3796(c/a) acts in the location  
                                                                              marked with +. 
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The building blocks of the crystal in Fig. 7 are 
characterized by r=0.2a, εra=11.56,  εrb=1, where r  is 
the ray of the circular dielectric “atom”, εra represents 
the relative electric permittivity of the “atom” and εrb   
the same dielectric constant but corresponding to the 
material that if found around the “atom” in the 
remaining of the cell. 

 

 
Fig. 7 Photonic optical guide laterally coupled to a 

monomod resonator. 
 
 

The excitation source is a narrowband modulated 
pulse test signal, characterized by a uniform spectrum in 
the frequency range [0.33(c/a), 0.4(c/a)] (where c is the 
speed of light in vacuum and a is the length of the side 
of each elementary square cell) and a maximum 
amplitude A=2 a.u.. The source is located at the bottom 
of Fig. 7 , in the middle of the optical guide (the point 
marked with “+”). 
 
 

 
Fig. 8 The field map (the Ez component of the 
electromagnetic field) for the case when the source 
produces a sinusoidal excitation having the frequency 
f=0.3796(c/a).  The  image  corresponds  to  a  moment  
             after the stationary regime is reached. 

 

The diagram in Fig. 6 demonstrates that the signal 
opposite to the source, with respect to the cavity, has a 
transitory regime which is an interval of time when the 
amplitude decreases with a rate dependent of the lifetime of 
the cavity. A stationary regime appears only after some time, 
the amplitude of the transmitted electric field stabilizing at a 
constant and close to zero value ( Fig. 6 ). 

As a note, regarding the evaluation of T(f)=Et(f)/Ei(f) in 
Fig. 5 (b), first of all, the entire incident energy, Ei, of the 
optical field (after the continuous regime is reached) that 
crosses the guide before the resonant cavity, is calculated, 
using the FDTD method. A function Ei =Ei(f) is obtained. 
The same procedure is applied again, this time, for the 
transmitted energy, Et(f), in a cross section of the guide 
situated after the resonant cavity with respect to the source.  
Finally, T(f) is obtained. Also, “total transmission = 0.9” (see 
Fig. 5 (b)) means that the entire energy (for all frequencies) 
transmitted in the guide beyond the cavity is 90% of the total 
incident energy. 

 
 
4. Conclusions 
 
The performances of a photonic crystal band-stop filter 

have been studied using a double approach. The first 
method, based on “coupled mode theory”, offers clear 
conditions for perfect transmission and zero reflection, being 
a powerful procedure for finding optimal parameters and 
explaining why the structure behaves like a band-stop filter. 
As can be seen by comparing Fig. 5 with Fig. 4, the band-
stop transmission diagram, calculated with the help of 
“coupled mode theory”, is not identical with the one 
obtained using FDTD which  means that the theoretical 
model described by (25) - (26) is not fully suitable for 
explaining the behavior of the real photonic device in Fig. 7. 
Despite the approximate nature of the method, the “coupled 
mode theory” proves to be a key tool that gives important 
information about the optimal configuration of photonic 
crystal based devices.  It is true, because of its generality, 
“coupled mode theory” does not tell what measures have to 
be taken in order to attain the right coupling coefficients. 
Their optimal values have to be found using FDTD in a trial 
and error process. 

Therefore, the analytical expression of T is only an 
approximation. Also, the values of 1/τ need to be determined 
experimentally (numerically with the help of FDTD - Finite 
Difference Time Domain - procedure). However, the 
formula for T permits a quick identification of potential 
unsuitable values for 1/τ (too small, big, etc.) and, in 
consequence, each τ can be adjusted accordingly, by 
inserting impurities of various diameters inside the cavity (a 
known procedure for modifying the emission absorption rate 
of the cavity). After a few FDTD simulations the right τ is 
obtained. 

As a remark, before proceeding to design an optical 
device using “coupled mode theory” and FDTD the 
properties of the uniform photonic crystal (i.e. its frequency 
gaps) have to be determined because, outside this forbidden 
ranges, electromagnetic energy will penetrate in the body of 
the crystal rendering it useless. Also, the properties of the 
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particular optical guide and cavity, more precisely the 
number of modes, the field maps of each mode, etc., 
have to be determined. The analytical model based on 
“coupled mode theory” presented in this paper is only 
valid if the cavity supports just one mode or at least only 
one is excited by the optical field in the guide and the 
other modes remain always inactive.   
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